Published in

Hindawi, Oxidative Medicine and Cellular Longevity, (2020), p. 1-7, 2020

DOI: 10.1155/2020/8877100

Links

Tools

Export citation

Search in Google Scholar

Effect of Anticancer Quinones on Reactive Oxygen Production by Adult Rat Heart Myocytes

Journal article published in 2020 by James H. Doroshow ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigated the effect of anthracycline antibiotics, mitomycin C, and menadione on oxygen consumption and hydrogen peroxide production by intact, beating, rat heart myocytes. Doxorubicin produced a dose-dependent increase in the rate of cyanide-resistant respiration by beating myocytes. The anthracycline analogs 4-demethoxydaunorubicin, 4′-epidoxorubicin, 4′-deoxydoxorubicin, and menogaril, as well as the anticancer quinones mitomycin C and menadione, also significantly increased oxygen consumption by cardiac myocytes. However, 5-iminodaunorubicin (which has a substituted quinone group) and mitoxantrone (which is not easily reduced by flavin dehydrogenases) had no effect on cardiac respiration. Both catalase (43%) and acetylated cytochrome c (19%) significantly decreased oxygen consumption that had been stimulated by doxorubicin; furthermore, extracellular hydrogen peroxide production was increased from undetectable control levels to1.30±0.02 nmol/min/107 myocytes (n=4,P<0.01) in the presence of 400 μM doxorubicin. These experiments suggest that the anthracycline antibiotics and other anticancer quinones stimulate cardiac oxygen radical production in intact heart myocytes; such a free radical cascade could contribute to the cardiac toxicity of these drugs.