Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 11(10), p. 1223, 2020

DOI: 10.3390/catal10111223

Links

Tools

Export citation

Search in Google Scholar

Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A series of Pt-based catalysts were synthesised and investigated for ambient temperature CO oxidation with the aim to increase catalytic activity and improve moisture resistance through support modification. Initially, bimetallic PtPd catalysts supported on alumina were found to exhibit superior catalytic activity compared with their monometallic counterparts for the reaction. Following an investigation into the effect of Pt/Pd ratio, a composition of 0.1% Pt/0.4% Pd was selected for further studies. Following this, SnO2/Al2O3 supports were synthesised from a variety of tin oxide sources. Catalytic activity was improved using sodium stannate and tin oxalate precursors compared with a traditional tin oxide slurry. Catalytic activity versus tin concentration was found to vary significantly across the three precursors, which was subsequently investigated by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX).