Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, AIDS Research and Therapy, 1(17), 2020

DOI: 10.1186/s12981-020-00318-8

Links

Tools

Export citation

Search in Google Scholar

Accuracy of the tuberculosis point-of-care Alere determine lipoarabinomannan antigen diagnostic test using α-mannosidase treated and untreated urine in a cohort of people living with HIV in Guatemala

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Improved point-of-care diagnostic tests for tuberculosis (TB) in severe immune suppressed people living with HIV (PLWH) are needed to decrease morbidity and mortality outcomes. The aim of the study is to evaluate the performance of the lipoarabinomannan antigen test (LAM-test) with and without α-mannosidase pre-treated urine in a cohort of PLWH in primary care clinics in Guatemala. We further determined TB incidence, and mortality rates and its risk factors in PLWH with TB symptoms. Methods Prospective longitudinal study of PLWH with TB symptoms. Urine samples were collected at 2 HIV sites to test the sensitivity of the LAM-test in urine with and without α-mannosidase pre-treatment. A composite reference standard of either a positive Mycobacterium tuberculosis complex culture and/or GeneXpert® MTB/RIF (Xpert, Cepheid, Sunnyvale, CA, USA) results was used in the LAM-test diagnostic accuracy studies. Cox proportional hazards regression was used to study mortality predictors. Results The overall sensitivity of the LAM-test was of 56.1% with 95% CI of (43.3–68.3). There were no differences in the LAM-test sensitivity neither by hospital nor by CD4 T cell values. LAM-test sensitivity in PLWH with < 200 CD4 T cells/µl was of 62.2% (95% CI 46.5–76.2). There were no significant differences in sensitivity when comparing LAM-test results obtained from untreated vs. α-mannosidase treated urine [55.2% (95% CI 42.6–67.4) vs. 56.9% (95% CI 44–69.2), respectively]. TB incidence in our cohort was of 21.4/100 person years (PYs) (95% CI 16.6–27.6), and mortality rate was of 11.1/100 PYs (95% CI 8.2–15.0). Importantly, PLWH with a positive LAM-test result had an adjusted hazard ratio (aHR) of death of 1.98 (1.0–3.8) with a significant p value of 0.044 when compared to PLWH with a negative LAM-test result. Conclusions In this study, α-mannosidase treatment of urine did not significantly increase the LAM-test performance, however; this needs to be further evaluated in a large-scale study due to our study limitations. Importantly, high rates of TB incidence and mortality were found, and a positive LAM-test result predicted mortality in PLWH with TB clinical symptoms.