Published in

American Diabetes Association, Diabetes, 1(70), p. 119-131, 2020

DOI: 10.2337/db20-0339

Links

Tools

Export citation

Search in Google Scholar

Pancreatic Sirtuin 3 Deficiency Promotes Hepatic Steatosis by Enhancing 5-Hydroxytryptamine Synthesis in Mice With Diet-Induced Obesity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sirtuin 3 (SIRT3) is a protein deacetylase regulating β-cell function through inhibiting oxidative stress in obese and diabetic mice, but the detailed mechanism and potential effect of β-cell–specific SIRT3 on metabolic homeostasis, and its potential effect on other metabolic organs, are unknown. We found that glucose tolerance and glucose-stimulated insulin secretion were impaired in high-fat diet (HFD)-fed β-cell–selective Sirt3 knockout (Sirt3f/f;Cre/+) mice. In addition, Sirt3f/f;Cre/+ mice had more severe hepatic steatosis than Sirt3f/f mice upon HFD feeding. RNA sequencing of islets suggested that Sirt3 deficiency overactivated 5-hydroxytryptamine (5-HT) synthesis as evidenced by upregulation of tryptophan hydroxylase 1 (TPH1). 5-HT concentration was increased in both islets and serum of Sirt3f/f;Cre/+ mice. 5-HT also facilitated the effect of palmitate to increase lipid deposition. Treatment with TPH1 inhibitor ameliorated hepatic steatosis and reduced weight gain in HFD-fed Sirt3f/f;Cre/+ mice. These data suggested that under HFD feeding, SIRT3 deficiency in β-cells not only regulates insulin secretion but also modulates hepatic lipid metabolism via the release of 5-HT.