Published in

Springer, Journal of Sol-Gel Science and Technology, 1(97), p. 11-26, 2020

DOI: 10.1007/s10971-020-05420-x

Links

Tools

Export citation

Search in Google Scholar

Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractInorganic/organic sol–gel hybrids consist of co-networks of inorganic and organic components that can lead to unique properties, compared to conventional composites, especially when there is covalent bonding between the networks. The aim here was to develop new electrospun silica/gelatin sol–gel hybrids, with covalent coupling and unique 3D cotton–wool-like morphology for application as regenerative medicine scaffolds. Covalent coupling is critical for obtaining sustained dissolution of the fibres and we identified the sol–gel synthesis conditions needed for coupling within the electrospun fibres. Under carefully controlled conditions, such as constant humidity, we investigated the effect of the electrospinning process variables of sol viscosity (and aging time) and amount of coupling agent on the 3D morphology of the fibres, their structure (bonding) and dissolution, identifying a detailed optimised protocol for fibre scaffold production.