Published in

Nature Research, Nature Physics, 12(8), p. 906-911, 2012

DOI: 10.1038/nphys2431

Links

Tools

Export citation

Search in Google Scholar

Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular nanomagnets are among the first examples of finite-size spin systems and have been test beds for addressing several phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to an appropriate spin Hamiltonian, which can be engineered to meet specific requirements. Unfortunately, so far it has been impossible to determine these spin dynamics directly. Here we show that recently developed instrumentation yields the four-dimensional inelastic-neutron scattering function in vast portions of reciprocal space and enables the spin dynamics to be determined directly. We use the Cr 8 antiferromagnetic ring as a benchmark to demonstrate the potential of this approach which allows us, for example, to examine how quantum fluctuations propagate along the ring or to test the degree of validity of the Néel-vector-tunnelling framework.