Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Pathogens, 10(9), p. 841, 2020

DOI: 10.3390/pathogens9100841

Links

Tools

Export citation

Search in Google Scholar

Diverse Epidemiology of Leptospira Serovars Notified in New Zealand, 1999–2017

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Leptospirosis in New Zealand has been strongly associated with animal-contact occupations and with serovars Hardjo and Pomona. However, recent data suggest changes in these patterns, hence, serovar-specific epidemiology of leptospirosis from 1999 to 2017 was investigated. The 19-year average annual incidence is 2.01/100,000. Early (1999–2007) and late (2008–2017) study period comparisons showed a significant increase in notifications with serovar Ballum (IRR: 1.59, 95% CI: 1.22–2.09) in all cases and serovar Tarassovi (IRR: 1.75, 95% CI: 1.13–2.78) in Europeans and a decrease in notifications with serovars Hardjo and Pomona in all cases. Incidences of Ballum peaked in winter, Hardjo peaked in spring and Tarassovi peaked in summer. Incidence was highest in Māori (2.24/100,000) with dominant serovars being Hardjo and Pomona. Stratification by occupation showed meat workers had the highest incidence of Hardjo (57.29/100,000) and Pomona (45.32/100,000), farmers had the highest incidence of Ballum (11.09/100,000) and dairy farmers had the highest incidence of Tarassovi (12.59/100,000). Spatial analysis showed predominance of Hardjo and Pomona in Hawke’s Bay, Ballum in West Coast and Northland and Tarassovi in Waikato, Taranaki and Northland. This study highlights the serovar-specific heterogeneity of human leptospirosis in New Zealand that should be considered when developing control and prevention strategies.