Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-74723-4

Links

Tools

Export citation

Search in Google Scholar

Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGrowth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.