Published in

American Heart Association, Circulation Research, 1(128), p. 62-75, 2021

DOI: 10.1161/circresaha.120.317596

Links

Tools

Export citation

Search in Google Scholar

tPA Mobilizes Immune Cells that Exacerbate Hemorrhagic Transformation in Stroke

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rationale: Hemorrhagic complications represent a major limitation of intravenous thrombolysis using tPA (tissue-type plasminogen activator) in patients with ischemic stroke. The expression of tPA receptors on immune cells raises the question of what effects tPA exerts on these cells and whether these effects contribute to thrombolysis-related hemorrhagic transformation. Objective: We aim to determine the impact of tPA on immune cells and investigate the association between observed immune alteration with hemorrhagic transformation in ischemic stroke patients and in a rat model of embolic stroke. Methods and Results: Paired blood samples were collected before and 1 hour after tPA infusion from 71 patients with ischemic stroke. Control blood samples were collected from 27 ischemic stroke patients without tPA treatment. A rat embolic middle cerebral artery occlusion model was adopted to investigate the underlying mechanisms of hemorrhagic transformation. We report that tPA induces a swift surge of circulating neutrophils and T cells with profoundly altered molecular features in ischemic stroke patients and a rat model of focal embolic stroke. tPA exacerbates endothelial injury, increases adhesion and migration of neutrophils and T cells, which are associated with brain hemorrhage in rats subjected to embolic stroke. Genetic ablation of annexin A2 in neutrophils and T cells diminishes the effect of tPA on these cells. Decoupling the interaction between mobilized neutrophils/T cells and the neurovascular unit, achieved via a S1PR (sphingosine-1-phosphate receptor) 1 modulator RP101075 and a CCL2 (C-C motif chemokine ligand 2) synthesis inhibitor bindarit, which block lymphocyte egress and myeloid cell recruitment, respectively, attenuates hemorrhagic transformation and improves neurological function after tPA thrombolysis. Conclusions: Our findings suggest that immune invasion of the neurovascular unit represents a previously unrecognized mechanism underlying tPA-mediated brain hemorrhage, which can be overcome by precise immune modulation during thrombolytic therapy.