Published in

MDPI, Plants, 10(9), p. 1338, 2020

DOI: 10.3390/plants9101338

Links

Tools

Export citation

Search in Google Scholar

Structural and Functional Organization of the Root System: A Comparative Study on Five Plant Species

Journal article published in 2020 by Adriano Sofo ORCID, Hazem S. Elshafie ORCID, Ippolito Camele ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Plants are affected by soil environments to the same extent that they affect soil functioning through interactions between environmental and genetic factors. Here, five plant species (broad bean, pea, cabbage, fennel, and olive) grown under controlled pot conditions were tested for their ability to differently stimulate the degradation of standard litter. Litter, soil C and N contents were measured for evaluating chemical changes due to plant presence, while soil microbial abundance was evaluated to assess if it had a positive or negative catalyzing influence on litter decomposition. The architecture and morphological traits of roots systems were also evaluated by using specific open-source software (SmartRoot). Soil chemical and microbiological characteristics were significantly influenced by the plant species. Variations in soil C/N dynamics were correlated with the diversity of root traits among species. Early stage decomposition of the standard litter changed on the basis of the plant species. The results indicated that key soil processes are governed by interactions between plant roots, soil C and N, and the microbial metabolism that stimulate decomposition reactions. This, in turn, can have marked effects on soil chemical and microbiological fertility, both fundamental for sustaining crops, and can promote the development of new approaches for optimizing soil C and N cycling, managing nutrient transport, and sustaining and improving net primary production.