Dissemin is shutting down on January 1st, 2025

Published in

North Carolina State University, BioResources, 1(14), p. 220-233, 2018

DOI: 10.15376/biores.14.1.220-233

Links

Tools

Export citation

Search in Google Scholar

Drying influence on the development of cracks in Eucalyptus logs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to evaluate the effect of the moisture loss, diameter, and wood density on the appearance of surface cracks and end splits in Eucalyptus urophylla logs. The drying and emergence of defects were evaluated in 108 logs with diameters ranging from 60 mm to 150 mm from the initial moisture content to the equilibrium moisture content. The defects were measured during this time. Smaller diameter logs dried faster than larger diameter logs and took less time to reach the fiber saturation point. Surface cracks tended to develop during the loss of bound water. End splits developed during free water loss and continued to appear during bound water loss. Smaller diameters presented higher percentages of surface cracks compared with larger diameters, while larger diameters had a tendency for higher percentages of end splits compared with smaller diameters. The density did not influence the total emergence of end splits, but it did influence the total emergence of surface cracks, indicating a possibility for the selection of genetic material with lower tendency for cracking. Overall, the results reinforce the need to control drying at its beginning in order to decrease the risk of defects.