Published in

Cambridge University Press, Proceedings of the International Astronomical Union, S350(15), p. 259-263, 2019

DOI: 10.1017/s1743921320000332

Links

Tools

Export citation

Search in Google Scholar

Modelling the properties of interstellar dust using the Si K-edge

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe properties of interstellar dust (ID) can be studied in great detail by making use of X-ray spectroscopy techniques. The radiation of X-rays sources is scattered and absorbed by dust grains in the interstellar medium. The X-ray band is especially suitable to study silicates - one of the main components of ID -since it contains the absorption edges of Si, Mg, O and Fe. In the Galaxy, we can use absorption features in the spectra of X-ray binaries to study the size distribution, composition and crystalline structure of grains. In order to derive these properties, it is necessary to acquire a database of detailed extinction cross sections models, that reflects the composition of the dust in the interstellar medium. We present the extinction profiles of a set of newly acquired measurements of 14 dust analogues at the Soleil Synchrotron facility in Paris, where we focus on silicates and the Si-K edge in particular, which is modelled with unprecedented accuracy. These models are used to analyse ID in the dense environments of the Galaxy.