Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 17(15), p. 10203-10218, 2015

DOI: 10.5194/acp-15-10203-2015

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 6(15), p. 8151-8189

DOI: 10.5194/acpd-15-8151-2015

Links

Tools

Export citation

Search in Google Scholar

Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a scanning mobility particle sizer on board the ATR-42 research aircraft during flights conducted between 11 September and 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process, both horizontally and vertically. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5–10 nm (N5–10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5–10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by local precursors originating from emission processes occurring above the sea, rather than linked to synoptic history. Vertical soundings were performed, giving the opportunity to examine profiles of the N5–10 concentration and to analyse the vertical extent of NPF. Our observations demonstrate that the process could be favoured above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the NPF frequency is close to 50 %. This vertical distribution of NPF might be favoured by the gradients of several atmospheric parameters, together with the mixing of two air parcels, which could also explain the occurrence of the process at preferential altitudes. In addition, increased condensation sinks collocated with high concentrations of small particles suggest the occurrence of NPF events promoted by inputs from the boundary layer, most probably associated with convective clouds and their outflow. After their formation, particles slowly grow at higher altitudes to diameters of at least 30 nm while not being greatly depleted or affected by coagulation. Our analysis of the particle size distributions suggests that particle growth could decrease with increasing altitude.