Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Epidemiology, Biomarkers & Prevention, 1(30), p. 166-174, 2021

DOI: 10.1158/1055-9965.epi-20-0694

Links

Tools

Export citation

Search in Google Scholar

Role of Tumor Mutation Burden Analysis in Detecting Lynch Syndrome in Precision Medicine: Analysis of 2,501 Japanese Cancer Patients

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: Tumor mutation burden (TMB) is the total exonic mutation count per megabase of tumor DNA. Recent advances in precision medicine occasionally detect Lynch syndrome (LS) by germline sequencing for mismatch-repair (g.MMR) genes but not using TMB. The current study analyzes the utility of TMB in detecting LS. Methods: Whole-exome sequencing (ion-semiconductor sequencing) was performed for somatic and germline DNA from 2,501 various cancer patients to detect TMB and g.MMR sequencing. MMR IHC was conducted when high TMB (≥10) was detected in LS-related cancers with an additional condition of wild-type BRAF in colorectal cancers. Target sequencing and multiplex ligation-dependent probe amplification (MLPA) were further performed for g.MMR genes in MMR-deficient cancers (TMB-based g.MMR target sequencing). We compared universal sequencing and TMB-based target sequencing in their sensitivity for detecting LS. Results: LS was detected in 16 (0.6%) of the 2,501 patients: 1.1% (9/826) of colorectal cancer patients, 16.2% (6/37) of endometrial cancer patients, and 14.3% (1/7) of small intestine cancer patients. TMB-based g.MMR target sequencing (81.3%) showed superior sensitivity for detecting LS than universal g.MMR sequencing (56.3%; P = 0.127) but missed 3 LS patients (1 with a low-TMB cancer, 1 with a BRAF-mutant colorectal cancer, and 1 with an MMR-proficient cancer). Ion-semiconductor sequencing could detect single-nucleotide substitutions but not large deletions. POL-mutated cancers showed extremely high TMBs (48.4–749.2). Conclusions: g.MMR target sequencing, combined with TMB, somatic BRAF mutation, and MMR IHC is an effective strategy for detecting LS. Impact: TMB can be a biomarker for detecting LS in precision medicine.