Published in

American Association for Cancer Research, Cancer Discovery, 2(11), p. 408-423, 2021

DOI: 10.1158/2159-8290.cd-20-0465

Links

Tools

Export citation

Search in Google Scholar

A TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1 deficiency

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract For anthracycline-based chemotherapy to be immunogenic, dying cancer cells must release annexin A1 (ANXA1) that subsequently interacts with the pattern recognition receptor, formyl peptide receptor 1 (FPR1), on the surface of dendritic cells (DC). Approximately 30% of individuals bear loss-of-function alleles of FPR1, calling for strategies to ameliorate their anticancer immune response. Here, we show that immunotherapy with a ligand of Toll-like receptor-3, polyinosinic:polycytidylic acid (pIC), restores the deficient response to chemotherapy of tumors lacking ANXA1 developing in immunocompetent mice or those of normal cancers growing in FPR1-deficient mice. This effect was accompanied by improved DC- and T-lymphocyte–mediated anticancer immunity. Of note, carcinogen-induced breast cancers precociously developed in FPR1-deficient mice as compared with wild-type controls. A similar tendency for earlier cancer development was found in patients carrying the loss-of-function allele of FPR1. These findings have potential implications for the clinical management of FPR1-deficient patients. Significance: The loss-of-function variant rs867228 in FPR1, harbored by approximately 30% of the world population, is associated with the precocious manifestation of breast, colorectal, esophageal, and head and neck carcinomas. pIC restores deficient chemotherapeutic responses in mice lacking Fpr1, suggesting a personalized strategy for compensating for the FPR1 defect. This article is highlighted in the In This Issue feature, p. 211