Published in

Universidade Federal de Santa Maria, Ciência Rural, 11(50), 2020

DOI: 10.1590/0103-8478cr20200082

Links

Tools

Export citation

Search in Google Scholar

Do alterations in gene expressions influence tumorigenesis in the transmissible venereal tumor in dogs?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Canine transmissible venereal tumor (CTVT) is a transmissible neoplasm, which spreads naturally between dogs through the halogenic transfer of tumor cells, mainly during coitus. It is the oldest known tumoral lineage in nature and reports on gene mutations have been extended. Also, this tumor shares several genetic mutations with some cancers in humans, among them lung carcinomas, melanoma, prostate, breast, among other cancers. Thus, expression of tumor suppressor genes such as TP53, P21, and apoptosis-related genes such as BAX, BCL-2, and BCL-xL, both in vivo and in vitro (primary cell culture) were quantified. In the present study, the comparison of gene expression, the TP53 gene, in most cases, was shown to be high in the majority of tissues (65%) and primary cell culture (100%), while BCL-2, BCL-xL, and BAX presented variation among the animals analyzed. Moreover, in these situations, the results suggested that the apoptotic regulation of these genes did not occur for TP53. The P21 gene was shown to be mostly normal (70%); although, absence (6%) and underexpressions (24%) were also observed. Statistical analysis of the BCL-xL gene demonstrated significant differences between the tissues of the animals when compared to the cell cultures; however, to the other genes, no statistical difference was observed between the groups. Preliminarily, the results suggested the presence of alterations in the gene expressions of the TP53, P21, BAX, BCL-2 and BCL-xL leading to loss of function in these genes, which affect the tumorigenesis of CTVT.