Published in

MDPI, Energies, 19(13), p. 5216, 2020

DOI: 10.3390/en13195216

Links

Tools

Export citation

Search in Google Scholar

Design and Analysis of a Linear Memory Machine for Ocean Wave Power Generation

Journal article published in 2020 by Yulong Liu ORCID, Xiaodong Zhang, Shuangxia Niu, Weinong Fu, Xinhua Guo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, a permanent magnet (PM) linear memory machine is proposed for ocean wave power generation. A notable feature of this machine is its online tunable mnemonic flux. This enables it to operate efficiently in a wide speed range and makes it suitable for the variable-speed wave-power generation. Moreover, this machine has both the PMs and the windings arranged in its stator so that it does not need slip rings or brushes. The proposed machine is also robust and cost-effective because it has a simple translator of slotted steel. In this paper, the configuration and working principle of the linear memory machine are firstly introduced. The results of a parametric analysis are presented to investigate the effects of the proposed machine’s geometric parameters. The performance of the proposed machine is then analyzed using time-stepping finite element method (TS-FEM).