Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, The Journal of Vascular Access, 6(22), p. 891-897, 2020

DOI: 10.1177/1129729820961941

Links

Tools

Export citation

Search in Google Scholar

A comparison of homemade vascular access ultrasound phantom models for peripheral intravenous catheter insertion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Ultrasound (U/S) guided peripheral IV catheter (PIV) placement is often needed after unsuccessful traditional IV attempts. Commercial U/S PIV training phantoms are expensive and difficult to alter. Non-commercial phantoms have been described; however, there has been no comparison of these models. The primary objectives of this study were to compare the echogenic and haptic properties of various non-commercial phantoms. Secondary objectives were to characterize the cost and ease of making the phantoms. Methods: This prospective observational study trialed six unique phantom models: Amini Ballistics; Morrow Ballistics; University of California San Diego (UCSD) gelatin; Rippey Chicken; Nolting Spam; and Johnson Tofu. Total cost and creation time were noted. Emergency Ultrasound Fellowship trained physicians performed U/S guided PIV placement on each model to evaluate their resemblance to human tissue haptic and echogenicity properties, utility for training, and comparability to commercial phantoms (Likert scale 1–5; higher performance = 5). Results: The Rippey model scored highest for each primary objective with an aggregate score of 4.8/5. UCSD ranked second and Nolting last for all primary objectives, with aggregate scores 3.7/5 and 1.3/5 respectively. Cost of production ranged from $4.39 (Johnson) to $29.76 (UCSD). Creation times ranged from 10 min (Johnson) to 120 min (UCSD). Conclusion: In our study the Rippey model performed best and offered a mid-level cost and creation time. Non-commercial U/S phantoms may represent cost-effective and useful PIV practice tools. Future studies should investigate the utility of these phantoms in teaching U/S guided PIV to novices and compare non-commercial to commercial phantoms.