Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 41(117), p. 25396-25401, 2020

DOI: 10.1073/pnas.2006373117

Links

Tools

Export citation

Search in Google Scholar

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Variational quantum algorithms combine quantum resources with classical optimization methods, providing a promising approach to solve both quantum many-body and classical optimization problems. A crucial question is how variational algorithms perform as a function of qubit number. Here, we address this question by applying a variational quantum algorithm (QAOA) to approximate the ground-state energy of a long-range Ising model, both quantum and classical, and investigating the algorithm performance on a trapped-ion quantum simulator with up to 40 qubits. A negligible performance degradation and almost constant runtime scaling is observed as a function of the number of qubits. By modeling the error sources, we explain the experimental performance, marking a stepping stone toward more general realizations of hybrid quantum–classical algorithms.