Published in

IOS Press, International Journal of Applied Electromagnetics and Mechanics, 4(65), p. 715-734, 2021

DOI: 10.3233/jae-201529

Links

Tools

Export citation

Search in Google Scholar

Decoupling control of bearingless permanent magnet synchronous motors with LSSVM inverse system method and internal model controller

Journal article published in 2020 by Ke Li, Feng Ling, Xiaodong Sun, Zebin Yang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a novel decoupling control scheme combining least squares support vector machines (LSSVM) inverse models and 2-degree-of-freedom (DOF) internal model controllers (IMC) is employed in the decoupling control system of the bearingless permanent magnet synchronous motor (BPMSM). This scheme can be used to enhance the control properties of high-precision, fast-response, and strong-robustness for the BPMSM system, and effectively eliminate the nonlinear and coupling influence. It introduces LSSVM inverse models into the original BPMSM system to constitute a decoupled pseudo-linear system. In addition, the particle swarm optimization algorithm (PSO) is used to optimize parameters of the LSSVM, which improves its fitting ability and prediction accuracy. What is more, the internal model control scheme is used to design additional closed-loop controllers, thereby improving the robustness of the entire control system. Therefore, this scheme successfully combines the advantages of the LSSVM inverse models and the internal model controller. It can enhance the stability and the static as well as dynamic properties of the whole BPMSM system while independently adjusting the tracking and interference rejection performances. The effectiveness of the proposed scheme has been verified by simulation results at various operations.