Published in

Springer, Cellular and Molecular Neurobiology, 5(41), p. 1039-1055, 2020

DOI: 10.1007/s10571-020-00971-7

Links

Tools

Export citation

Search in Google Scholar

Alternative Splicing of Opioid Receptor Genes Shows a Conserved Pattern for 6TM Receptor Variants

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe opioid receptor (OPR) family comprises the mu-, delta-, and kappa-opioid, and nociceptin receptors that belong to the superfamily of 7-transmembrane spanning G protein-coupled receptors (GPCRs). The mu-opioid receptor is the main target for clinically used opioid analgesics, and its biology has been extensively studied. The N-terminally truncated 6TM receptors isoform produced through alternative splicing of the OPRM1 gene displays unique signaling and analgesic properties, but it is unclear if other OPRs have the same ability. In this study, we have built a comprehensive map of alternative splicing events that produce 6TM receptor variants in all the OPRs and demonstrated their evolutionary conservation. We then obtained evidence for their translation through ribosomal footprint analysis. We discovered that N-terminally truncated 6TM GPCRs are rare in the human genome and OPRs are overrepresented in this group. Finally, we also observed a significant enrichment of 6TM GPCR genes among genes associated with pain, psychiatric disorders, and addiction. Understanding the biology of 6TM receptors and leveraging this knowledge for drug development should pave the way for novel therapies.