Published in

Optica, Optica, 12(7), p. 1682, 2020

DOI: 10.1364/optica.397549

Links

Tools

Export citation

Search in Google Scholar

Deep-tissue label-free quantitative optical tomography

Journal article published in 2020 by Jelle van der Horst, Jeroen Kalkman ORCID, Anna K. Trull
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In vivo imaging of small animals is of wide interest to the biomedical community studying biological disease and developmental processes. However, optical imaging deep in tissue is severely limited by light scattering, posing restrictions on the imaging depth, image contrast, and spatial resolution. We demonstrate optical coherence projection tomography (OCPT) as a fast three-dimensional optical imaging technique for ballistic, non-scattered light, deep-tissue imaging. OCPT is based on a novel scanning transmission sample arm to rapidly measure ballistic light projections of amplitude and phase through thick biological tissues. We demonstrate the strength of OCPT by imaging an adult zebrafish in a total volume of 1000 m m 3 acquired in 24 min. We achieve an unprecedented imaging depth of 4 mm in biological tissue without using optical clearing (up to 27 mean free paths of photon transport). A new way of analyzing optical tomographic imaging depth is demonstrated and applied to OCPT. It shows that the strong light scattering suppression in OCPT is pivotal to reach the SNR limited imaging depth. OCPT allows for a full quantitative assessment of tissue parameters, which is demonstrated by quantifying the attenuation coefficient, refractive index, surface area, and volume of various organs deep inside the zebrafish. Our work opens up the way for longitudinal in vivo small animal studies from the larval to the adult stages.