Published in

Hindawi, Oxidative Medicine and Cellular Longevity, (2020), p. 1-11, 2020

DOI: 10.1155/2020/7815325

Links

Tools

Export citation

Search in Google Scholar

Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway

Journal article published in 2020 by Xinjie Gao, Heng Yang, Jiabin Su, Weiping Xiao, Wei Ni ORCID, Yuxiang Gu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ischemic stroke is one of the major causes of disability; widely use of endovascular thrombectomy or intravenous thrombolysis leads to more attention on ischemia-reperfusion injury (I/R injury). Aescin, a natural compound isolated from the seed of the horse chestnut, has been demonstrated anti-inflammatory and antiedematous effects previously. This study was aimed at determining whether aescin could induce protective effects against ischemia-reperfusion injury and exploring the underlying mechanisms in vitro. Primary cultured neurons were subjected to 2 hours of oxygen-glucose deprivation (OGD) followed by 24 hours of simulated reperfusion. Aescin, which worked in a dose-dependent manner, could significantly attenuate neuronal death and reduce lactate dehydrogenase (LDH) release after OGD and simulated reperfusion. Aescin treatment at a concentration of 50 μg/ml provided protection with fewer side effects. Results showed that aescin upregulated the phosphorylation level of PRAS40 and proteins in the mTOR signaling pathway, including S6K and 4E-BP1. However, PRAS40 knockdown or rapamycin treatment was able to undermine and even abolish the protective effects of aescin; meanwhile, the levels of phosphorylation PRAS40 and proteins in the mTOR signaling pathway were obviously decreased. Hence, our study demonstrated that aescin provided neuronal protective effects against I/R injury through the PRAS40/mTOR signaling pathway in vitro. These results might contribute to the potential clinical application of aescin and provide a therapeutic target on subsequent cerebral I/R injury.