Published in

Wiley, ChemPhysChem, 1(11), p. 159-174, 2010

DOI: 10.1002/cphc.200900647

Links

Tools

Export citation

Search in Google Scholar

Reconstruction of Aperture Functions during Full Fusion in Vesicular Exocytosis of Neurotransmitters

Journal article published in 2010 by Christian Amatore ORCID, Alexander I. Oleinick, Irina Svir ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Individual vesicular exocytosis of adrenaline by dense core vesicles in chromaffin cells is considered here as a paradigm of many situations encountered in biology, nanosciences and drug delivery in which a spherical container releases in the external environment through gradual uncovering of its surface. A procedure for extracting the aperture (opening) function of a biological vesicle fusing with a cell membrane from the released molecular flux of neurotransmitter as monitored by amperometry has been devised based on semi-analytical expressions derived in a former work [C. Amatore, A. I. Oleinick, I. Svir, ChemPhysChem 2009, 10, DOI: 10.1002/cphc.200900646]. This precise analysis shows that in the absence of direct information about the radius of the vesicle or about the concentration of the adrenaline cation stored by the vesicle matrix, current spikes do not contain enough information to determine the maximum aperture angle. Yet, a statistical analysis establishes that this maximum aperture angle is most probably less than a few tens of degrees, which suggests that full fusion is a very improbable event.