Dissemin is shutting down on January 1st, 2025

Published in

EDP Sciences, EPJ Web of Conferences, (239), p. 07003, 2020

DOI: 10.1051/epjconf/202023907003

Links

Tools

Export citation

Search in Google Scholar

The 154Gd neutron capture cross section measured at the n_TOF facility and its astrophysical implications

Journal article published in 2020 by M. Mastromarco, A. Mazzone, C. Massimi, S. Cristallo, N. Colonna, O. Aberle, V. Alcayne ORCID, S. Amaducci, J. Andrzejewski, L. Audouin, V. Babiano-Suarez, M. Bacak, M. Barbagallo, S. Bennett, E. Berthoumieux and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The (n, γ) cross sections of the gadolinium isotopes play an important role in the study of the stellar nucleosynthesis. In particular, among the isotopes heavier than Fe, 154Gd together with 152Gd have the peculiarity to be mainly produced by the slow capture process, the so-called s-process, since they are shielded against the β-decay chains from the r-process region by their stable samarium isobars. Such a quasi pure s-process origin makes them crucial for testing the robustness of stellar models in galactic chemical evolution (GCE). According to recent models, the 154Gd and 152Gd abundances are expected to be 15-20% lower than the reference un-branched s-process 150Sm isotope. The close correlation between stellar abundances and neutron capture cross sections prompted for an accurate measurement of 154Gd cross section in order to reduce the uncertainty attributable to nuclear physics input and eventually rule out one of the possible causes of present discrepancies between observation and model predictions. To this end, the neutron capture cross section of 154Gd was measured in a wide neutron energy range (from thermal up to some keV) with high resolution in the first experimental area of the neutron time-of-flight facility n_TOF (EAR1) at CERN. In this contribution, after a brief description of the motivation and of the experimental setup used in the measurement, the preliminary results of the 154Gd neutron capture reaction as well as their astrophysical implications are presented.