Published in

Elsevier, Surface Science, 1(513), p. 140-148

DOI: 10.1016/s0039-6028(02)01703-x

Links

Tools

Export citation

Search in Google Scholar

A fast XPS study of sulphate promoted propene decomposition over Pt{}

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SO2 oxidation has been followed by Fast XPS over Pt{1 1 1}. Preadsorbed oxygen reduces the low temperature saturation coverage of SO2 with respect to the clean surface. Heating a mixed O2/SO2 adlayer results in efficient oxidation of both upright and flat-lying SO2 molecules to surface-bound SO4. Sulphate decomposes above room temperature liberating gas-phase SO2 and SO3. Propene adsorbs molecularly at 100 K over clean Pt{1 1 1} and dehydrogenates above 250 K to form a stable propylidyne adlayer, which in turn decomposes above 400 K to form graphitic carbon. Preadsorbed surface sulphate enhances the sticking probability of propene via formation of an alkyl-sulphate complex. Thermal decomposition of this complex accounts for low temperature propene combustion and is accompanied by atomic sulpur deposition. Propylidyne forms as on clean Pt but is less reactive undergoing partial oxidation above 450 K with residual surface oxygen.