Published in

Oxford University Press, NAR Genomics and Bioinformatics, 4(2), 2020

DOI: 10.1093/nargab/lqaa077

Links

Tools

Export citation

Search in Google Scholar

SIMPLEs: a single-cell RNA sequencing imputation strategy preserving gene modules and cell clusters variation

Journal article published in 2020 by Zhirui Hu ORCID, Songpeng Zu ORCID, Jun S. Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract A main challenge in analyzing single-cell RNA sequencing (scRNA-seq) data is to reduce technical variations yet retain cell heterogeneity. Due to low mRNAs content per cell and molecule losses during the experiment (called ‘dropout’), the gene expression matrix has a substantial amount of zero read counts. Existing imputation methods treat either each cell or each gene as independently and identically distributed, which oversimplifies the gene correlation and cell type structure. We propose a statistical model-based approach, called SIMPLEs (SIngle-cell RNA-seq iMPutation and celL clustErings), which iteratively identifies correlated gene modules and cell clusters and imputes dropouts customized for individual gene module and cell type. Simultaneously, it quantifies the uncertainty of imputation and cell clustering via multiple imputations. In simulations, SIMPLEs performed significantly better than prevailing scRNA-seq imputation methods according to various metrics. By applying SIMPLEs to several real datasets, we discovered gene modules that can further classify subtypes of cells. Our imputations successfully recovered the expression trends of marker genes in stem cell differentiation and can discover putative pathways regulating biological processes.