Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter Open, Current Directions in Biomedical Engineering, 1(6), 2020

DOI: 10.1515/cdbme-2020-0004

Links

Tools

Export citation

Search in Google Scholar

Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In endoscopy, depth estimation is a task that potentially helps in quantifying visual information for better scene understanding. A plethora of depth estimation algorithms have been proposed in the computer vision community. The endoscopic domain however, differs from the typical depth estimation scenario due to differences in the setup and nature of the scene. Furthermore, it is unfeasible to obtain ground truth depth information owing to an unsuitable detection range of off-the-shelf depth sensors and difficulties in setting up a depth-sensor in a surgical environment. In this paper, an existing self-supervised approach, called Monodepth [1], from the field of autonomous driving is applied to a novel dataset of stereo-endoscopic images from reconstructive mitral valve surgery. While it is already known that endoscopic scenes are more challenging than outdoor driving scenes, the paper performs experiments to quantify the comparison, and describe the domain gap and challenges involved in the transfer of these methods.