Published in

SAGE Publications, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2(235), p. 209-229, 2020

DOI: 10.1177/1748006x20959894

Links

Tools

Export citation

Search in Google Scholar

An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme

Journal article published in 2020 by Sheng-Tong Zhou ORCID, Di Wang, Qian Xiao, Jian-Min Zhou, Hong-Guang Li, Wen-Bing Tu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method.