Published in

The Royal Society, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2183(378), p. 20190315, 2020

DOI: 10.1098/rsta.2019.0315

Links

Tools

Export citation

Search in Google Scholar

Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac ( nūshādir , nao sha ) is found to have been extremely valuable in long-distance trade ( ca AD 600–1150) from Egypt and China, where 6–8 kg N could purchase a human life, while air pollution associated with nūshādir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as an early experimental mesocosm to understand the world—and later became of interest as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO 2 and NO x emissions leaves atmospheric NH 3 in excess in many areas, contributing to particulate matter (PM 2.5 ) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH 3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr −1 ), as part of developing the circular economy for sustainable nitrogen management. This article is part of a discussion meeting issue ‘Air quality, past present and future’.