Published in

BMJ Publishing Group, BMJ Open, 9(10), p. e040453, 2020

DOI: 10.1136/bmjopen-2020-040453



Export citation

Search in Google Scholar

Patch validation: an observational study protocol for the evaluation of a multisignal wearable sensor in patients during anaesthesia and in the postanaesthesia care unit

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


IntroductionExcept for operating rooms, postanaesthesia care units and intensive care units, where the monitoring of vital signs is continuous, intermittent care is standard practice. However, at a time when only the patients with the most serious conditions are hospitalised and only a fraction of these patients are in intensive care units, this type of monitoring is no longer sufficient. Wireless monitoring has been proposed, but it requires rigorous validation. The aim of this observational study is to compare vital signs obtained from a precordial patch sensor to those obtained with conventional monitoring.Methods and analysisThis patch validation trial will be an observational, prospective, single-centre open study of 115 anaesthetised adult patients monitored with both a wireless sensor (myAngel VitalSigns, Devinnova, Montpellier, France) and a standard bedside monitor (Carescape Monitor B850, GE Healthcare, Chicago, Illinois). Both sensors will be used to record peripheral oxygen saturation, respiratory rate, heart rate, body temperature and blood pressure (systolic and diastolic). The main objective will be to assess the degree of agreement between the two systems during the patients’ stay in the postanaesthesia care unit, both at the raw signal level and at the clinical parameter level. The secondary objectives will be to assess the same performance under anaesthesia, the frequency of missing data or artefacts, the diagnostic performance of the systems, the influence of patients’ characteristics on agreement between the two systems, the adverse events and the acceptability of the patch to patients. Bland-Altman plots will be used in the main analysis to detect discrepancies and estimate the limits of agreement.Ethics and disseminationEthics approval was obtained from the Ethical Committee (Toulouse, France) on 10 April 2020. We are not yet recruiting subjects for this study. The results will be submitted for publication in peer-reviewed journals.Trial registration numberNCT04344093.