Published in

American Association for Cancer Research, Cancer Discovery, 1(11), p. 108-125, 2021

DOI: 10.1158/2159-8290.cd-20-0487

Links

Tools

Export citation

Search in Google Scholar

Resistance to avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Gastrointestinal stromal tumors (GIST) harboring activating mutations of PDGFRA respond to imatinib, with the notable exception of the most common mutation, D842V. Avapritinib is a novel, potent KIT/PDGFRA inhibitor with substantial clinical activity in patients with the D842V genotype. To date, only a minority of PDGFRA-mutant patients treated with avapritinib have developed secondary resistance. Tumor and plasma biopsies in 6 of 7 patients with PDGFRA primary mutations who progressed on avapritinib or imatinib had secondary resistance mutations within PDGFRA exons 13, 14, and 15 that interfere with avapritinib binding. Secondary PDGFRA mutations causing V658A, N659K, Y676C, and G680R substitutions were found in 2 or more patients each, representing recurrent mechanisms of PDGFRA GIST drug resistance. Notably, most PDGFRA-mutant GISTs refractory to avapritinib remain dependent on the PDGFRA oncogenic signal. Inhibitors that target PDGFRA protein stability or inhibition of PDGFRA-dependent signaling pathways may overcome avapritinib resistance. Significance: Here, we provide the first description of avapritinib resistance mechanisms in PDGFRA-mutant GIST. This article is highlighted in the In This Issue feature, p. 1