Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Circulation Research, 12(127), p. 1536-1548, 2020

DOI: 10.1161/circresaha.120.317349

Links

Tools

Export citation

Search in Google Scholar

Ionic Mechanisms of Impulse Propagation Failure in the FHF2-Deficient Heart

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rationale: FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (Na V ) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Na v availability in Fhf2 knockout ( Fhf2 KO ) mice predisposes to abnormal excitability at the tissue level are not well defined. Objective: Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction. Methods and Results: Fhf2 KO mice were challenged by reducing calcium conductance (gCa V ) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in Fhf2 KO mice, with Fhf2 wild-type ( Fhf2 WT ) mice showing normal impulse propagation. To explore the ionic mechanisms of block in Fhf2 KO hearts, multicellular linear strand models incorporating FHF2-deficient Na v inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCa V or diminished Gj are very different. Enhanced Na v inactivation due to FHF2 deficiency shifts dependence onto calcium current (I Ca ) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Na v inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation. Conclusions: FHF2-dependent effects on Na v inactivation ensure adequate sodium current (I Na ) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.