Published in

Oxford University Press, Journal of the Endocrine Society, 11(4), 2020

DOI: 10.1210/jendso/bvaa136

Links

Tools

Export citation

Search in Google Scholar

Temporal Pole Responds to Subtle Changes in Local Thyroid Hormone Signaling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

Abstract To study thyroid hormone (TH) signaling in the human brain, we analyzed published microarray data sets of the temporal pole (Brodmann area 38) of 19 deceased donors. An index of TH signaling built on the expression of 19 well known TH-responsive genes in mouse brains (T3S+) varied from 0.92 to 1.1. After Factor analysis, T3S+ correlated independently with the expression of TH transporters (MCT8, LAT2), TH receptor (TR) beta and TR coregulators (CARM1, MED1, KAT2B, SRC2, SRC3, NCOR2a). Unexpectedly, no correlation was found between T3S+ vs DIO2, DIO3, SRC1, or TRα. An unbiased systematic analysis of the entire transcriptome identified a set of 1649 genes (set #1) with strong positive correlation with T3S+ (r > 0.75). Factor analysis of set #1 identified 2 sets of genes that correlated independently with T3S+, sets #2 (329 genes) and #3 (191 genes). When processed through the Molecular Signatures Data Base (MSigDB), both sets #2 and #3 were enriched with Gene Ontology (GO)-sets related to synaptic transmission and metabolic processes. Ranking individual human brain donors according to their T3S+ led us to identify 1262 genes (set #4) with >1.3-fold higher expression in the top half. The analysis of the overlapped genes between sets #1 and #4 resulted in 769 genes (set #5), which have a very similar MSigDB signature as sets #2 and #3. In conclusion, gene expression in the human temporal pole can be assessed through T3S+ and fluctuates with subtle variations in local TH signaling.