Published in

BMJ Publishing Group, Regional Anesthesia & Pain Medicine, 12(45), p. 955-963, 2020

DOI: 10.1136/rapm-2020-101411

Links

Tools

Export citation

Search in Google Scholar

Regulation of the KATP-JNK gap junction signaling pathway by immunomodulator astragaloside IV attenuates neuropathic pain

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and objectivesGap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated.MethodsChronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave’s method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting.ResultsAstragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (KATP) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. KATP channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells.ConclusionOur results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating KATP/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the KATP-JNK gap junction axis.