Published in

The Electrochemical Society, ECS Transactions, 2(98), p. 53-62, 2020

DOI: 10.1149/09802.0053ecst

ECS Meeting Abstracts, 10(MA2020-02), p. 1211-1211, 2020

DOI: 10.1149/ma2020-02101211mtgabs

Links

Tools

Export citation

Search in Google Scholar

Ordered Macroporous Photonic Crystal Hot Electron Plasmonic Photocatalysts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plasmonic metal-semiconductor heterostructures are promising for photocatalytic applications since the metal and the oxide semiconductor can absorb light in the visible spectrum leading to better catalytic rates. Photon absorption efficiency can be enhanced by fashioning the catalyst into a photonic crystal that can enhance absorption at certain wavelength because of its structure. We show how Au nanoparticle sensitized V2O5 and TiO2 inverse opal photonic crystals can enhanced reaction rate for catalysis by over an order of magnitude under λ = 532 nm excitation or under white light illumination. This effect is shown to results from spectral overlap of the electronic band gap, localized surface plasmon resonance and the excitation photon energy. When we compare the photocatalytic response of Au-V2O5 IO with Au-TiO2 IO, we can selectively enhance reaction rates either in the visible or in the UV regions, depending on the bandgap of the semiconductor, and the photonic band gap of the IO. For Au-TiO2 IO, hot electron transfer occurs from the gold into the conduction band, and better catalysis under white light illumination at the TiO2 surface is attributed to improved photon adsorption in the visible by the presence of a photonic band gap, slow light in the photonic crystal to enhance photon absorption, the UV bandgap of the TiO2, and the localised surface plasmon resonance of the Au. For Au-V2O5, electron transfer to the Au in addition to enhanced absorption in the visible range, promote better catalysis at λ = 532 nm.