Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 9(61), p. 2077-2087, 2013

DOI: 10.1021/jf304478n

Links

Tools

Export citation

Search in Google Scholar

Qualitative Screening of Undesirable Compounds from Feeds to Fish by Liquid Chromatography Coupled to Mass Spectrometry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper describes the development, validation, and application of a rapid screening method for the detection and identification of undesirable organic compounds in aquaculture products. A generic sample treatment was applied without any purification or preconcentration step. After extraction of the samples with acetonitrile/water 80:20 (0.1% formic acid), the extracts were centrifuged and directly injected in the LC-HRMS system, consisting of ultra-high performance liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). A qualitative validation was carried out for over 70 representative compounds, including antibiotics, pesticides, and mycotoxins, in fish feed and fish fillets spiked at 20 and 100 μg/kg. At the highest level, the great majority of compounds were detected (using the most abundant ion, typically the protonated molecule) and unequivocally identified (on the basis of the presence of two accurate-mass measured ions). At the 20 μg/kg level, many contaminants could already be detected, although identification using two ions was not fully reached for some of them, mainly in fish feed due to the complexity of this matrix. Subsequent application of this screening methodology to aquaculture samples made it possible to find several compounds from the target list, such as the antibiotic ciprofloxacin, the insecticide pirimiphos-methyl, and the mycotoxins fumonisin B2 and zearalenone. A retrospective analysis of accurate-mass full-spectrum acquisition data provided by QTOF MS was also made, without either reprocessing or injecting the samples. This allowed the detection and tentative identification of other organic undesirables different from those included in the validated list.