Published in

American Chemical Society, Journal of Physical Chemistry C, 34(117), p. 17462-17469, 2013

DOI: 10.1021/jp405848j

Links

Tools

Export citation

Search in Google Scholar

Amorphous Iron Oxyhydroxide Nanosheets: Synthesis, Li Storage, and Conversion Reaction Kinetics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a facile approach to synthesize amorphous iron oxyhydroxide nanosheet from the surfactant-assisted oxidation of iron sulfide nanosheet. The amorphous iron oxyhydroxide nanosheet is porous and has a high surface area of 223 m(2) g(-1). The lithium storage properties of the amorphous iron oxyhydroxide are characterized: it is a conversion-reaction electrode material, and it demonstrates superior rate capabilities (e.g., discharge capacities as high as 642 mAh g(-1) are delivered at a current density of 2 C). The impedance spectroscopy analysis identifies a RC series subcircuit originated by the conversion-reaction process. Investigation of the conversion-reaction kinetics through the RC subcircuit time constant reproduces the hysteresis in the discharge/charge voltage profile. Hysteresis is then connected to underlying thermodynamics of the conversion reaction rather than to a kinetic limitation.