Published in

SAGE Publications, High Performance Polymers, 3(33), p. 338-344, 2020

DOI: 10.1177/0954008320958035

Links

Tools

Export citation

Search in Google Scholar

Solubilization, characterization, and protein coupling analysis to multiwalled carbon nanotubes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Since their discovery, carbon nanotubes were used for numerous applications in the most diverse knowledge areas. However, the lack of solubility of these molecules in aqueous media compromises their beneficial properties for certain applications. Several methods to solubilize carbon nanotubes are described, however, depending on the intended application, the impact that the solubilization has on the physical and chemical properties needs to be considered. In the present study, a simple methodology is described that utilizes polyvinylpyrrolidone combined with sonication and centrifugation to solubilize multiwalled carbon nanotubes. Proteins were coupled to the surface of the solubilized products and characterized using various spectroscopic and electron microscopic techniques, evaluating the characteristics and integrity of the nanoparticle after the process. It was successfully demonstrated that nanotubes can be solubilized through a simple technique, without compromising their chemical characteristics, which makes them suitable materials for use in biomedical applications, due to their biocompatibility and lack of toxicity, among others.