Published in

Springer, European Radiology, 3(31), p. 1245-1256, 2020

DOI: 10.1007/s00330-020-07254-1

Links

Tools

Export citation

Search in Google Scholar

Head-to-head comparison of multiple cardiovascular magnetic resonance techniques for the detection and quantification of intramyocardial haemorrhage in patients with ST-elevation myocardial infarction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives T2*-weighted (T2*w) is deemed as a reference standard for post-infarction intramyocardial haemorrhage (IMH). However, high proportion of T2* images is affected by off-resonance artefacts hampering image interpretation. Diagnostic accuracy and precision of alternative techniques for IMH diagnosis and quantification have been seldomly investigated. Methods and results Between April 2016 and May 2017, 50 ST-segment elevation myocardial infarction patients (66% male, 57 ± 17 years) and 15 healthy controls (60% male, 58 ± 13) were consecutively enrolled. Subjects underwent head-to-head comparison of single mid-infarct slice acquired on black-blood T2-weighted short-TI-inversion recovery (T2w-STIR), bright-blood T2prep-steady-state-free precession (T2prep-SSFP), and T2/T1 maps for IMH diagnosis and quantification against T2*w. All images were graded for quality (grade 1: very poor; grade 4: excellent) and diagnostic confidence (Likert scale, 1: very unsure and 5: highly confident). Reduced relaxation time/hypointense region (hypocore) embedded in infarct-related oedema on T2 map, T1 map, and T2w-STIR had the best overall diagnostic accuracy (per-subject: 91%, 86%, and 86%, respectively; per segment: 95%, 93%, and 93%, respectively). By mixed-effects analysis, image quality, and diagnostic confidence were higher for T2 map and T1 maps than T2*w (p < 0.05 for both scores). For IMH quantification, hypocore on T2 map and T1 map strongly correlated (Spearman’s r > 0.7, p < 0.001 for both) with IMH extent on T2*w and presented an overall excellent agreement on Bland-Altman analysis. By linear mixed model analysis, absolute hypocore size did not differ among T1-, T2 map, and T2*w. T2/T1 maps had the best intra- and inter-observer reproducibility among CMR techniques. Conclusion Hypocore on T2/T1 map is the best alternative technique to T2*w for diagnosing and quantifying IMH in post-STEMI patients. Key Point • Mapping techniques are the best alternatives for diagnosing post-infarction intramyocardial haemorrhage. • Mapping techniques are valuable tools for imaging intramyocardial haemorrhage.