Published in

MDPI, Journal of Clinical Medicine, 9(9), p. 2920, 2020

DOI: 10.3390/jcm9092920

Links

Tools

Export citation

Search in Google Scholar

A Pilot Study on MicroRNA Profile in Tear Fluid to Predict Response to Anti-VEGF Treatments for Diabetic Macular Edema

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(1) Background: Intravitreal anti-vascular endothelial growth factor (anti-VEGF) is an established treatment for center-involving diabetic macular edema (ci-DME). However, the clinical response is heterogeneous. This study investigated miRNAs as a biomarker to predict treatment response to anti-VEGF in DME. (2) Methods: Tear fluid, aqueous, and blood were collected from patients with treatment-naïve DME for miRNA expression profiling with quantitative polymerase chain reaction. Differentially expressed miRNAs between good and poor responders were identified from tear fluid. Bioinformatics analysis with the miEAA tool, miRTarBase Annotations, Gene Ontology categories, KEGG, and miRWalk pathways identified interactions between enriched miRNAs and biological pathways. (3) Results: Of 24 participants, 28 eyes received bevacizumab (15 eyes) or aflibercept (13 eyes). Tear fluid had the most detectable miRNA species (N = 315), followed by serum (N = 309), then aqueous humor (N = 134). MiRNAs that correlated with change in macular thickness were miR-214-3p, miR-320d, and hsa-miR-874-3p in good responders; and miR-98-5p, miR-196b-5p, and miR-454-3p in poor responders. VEGF-related pathways and the angiogenin-PRI complex were enriched in good responders, while transforming growth factor-β and insulin-like growth factor pathways were enriched in poor responders. (4) Conclusions: We reported a panel of novel miRNAs that provide insight into biological pathways in DME. Validation in larger independent cohorts is needed to determine the predictive performance of these miRNA candidate biomarkers.