Published in

American Association for the Advancement of Science, Science, 6514(370), p. 342-346, 2020

DOI: 10.1126/science.abd6749

Links

Tools

Export citation

Search in Google Scholar

Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Low-grade heat (below 373 kelvin) is abundant and ubiquitous but is mostly wasted because present recovery technologies are not cost-effective. The liquid-state thermocell (LTC), an inexpensive and scalable thermoelectric device, may be commercially viable for harvesting low-grade heat energy if its Carnot-relative efficiency (ηr) reaches ~5%, which is a challenging metric to achieve experimentally. We used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (~3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs. As a result, we achieved a high ηr of 11.1% for LTCs near room temperature. Our device demonstration offers promise for cost-effective low-grade heat harvesting.