Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 9(10), p. 1040, 2020

DOI: 10.3390/catal10091040

Links

Tools

Export citation

Search in Google Scholar

Novel Materials for Combined Nitrogen Dioxide and Formaldehyde Pollution Control under Ambient Conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Formaldehyde (HCHO) and nitrogen dioxide (NO2) often co-exist in urban environments at levels that are hazardous to health. There is a demand for a solution to the problem of their combined removal. In this paper, we investigate catalysts, adsorbents and composites for their removal efficiency (RE) toward HCHO and NO2, in the context of creating a pollution control device (PCD). Proton-transfer-reaction mass spectrometry and cavity ring-down spectrometry are used to measure HCHO, and chemiluminescence and absorbance-based monitors for NO2. Commercially available and lab-synthesized materials are tested under relevant conditions. None of the commercial adsorbents are effective for HCHO removal, whereas two metal oxide-based catalysts are highly effective, with REs of 81 ± 4% and 82 ± 1%, an improvement on previous materials tested under similar conditions. The best performing material for combined removal is a novel composite consisting of a noble metal catalyst supported on a metal oxide, combined with a treated active carbon adsorbent. The composite is theorized to work synergistically to physisorb and oxidize HCHO and chemisorb NO2. It has an HCHO RE of 72 ± 2% and an NO2 RE of 96 ± 2%. This material has potential as the active component in PCDs used to reduce personal pollution exposure.