Oxford University Press, Stem Cells, 12(38), p. 1557-1567, 2020
DOI: 10.1002/stem.3272
Full text: Download
Abstract MicroRNAs (miRNAs), a class of small, noncoding RNA molecules, represent important regulators of gene expression. Recent reports have implicated their role in the cell specification process acting as “fine-tuners” to ensure the precise gene expression at the specific stage of cell differentiation. Here, we used retinal organoids differentiated from human pluripotent stem cells (hPSCs) as a model to closely investigate the role of a sensory organ-specific and evolutionary conserved miR-183/96/182 cluster. Using a miRNA tough decoy approach, we inhibited the miR-183/96/182 cluster in hPSCs. Inhibition of the miRNA cluster resulted in an increased expansion of neuroepithelium leading to abnormal “bulged” neural retina in organoids, associated with upregulation of neural-specific and retinal-specific genes. Importantly, we identified PAX6, a well-known essential gene in neuroectoderm specification, as a target of the miR-183/96/182 cluster members. Taken together, the miR-183/96/182 cluster not only represents an important regulator of PAX6 expression, but it also plays a crucial role in retinal tissue morphogenesis.