Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 12(105), p. e4531-e4542, 2020

DOI: 10.1210/clinem/dgaa631

Links

Tools

Export citation

Search in Google Scholar

ARMC5 alterations in patients with sporadic neuroendocrine tumors and multiple endocrine neoplasia type 1 (MEN1)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Adrenal lesions are frequent among patients with sporadic neuroendocrine tumors (spNETs) or multiple endocrine neoplasia type 1 (MEN1). Armadillo repeat-containing 5 (ARMC5)-inactivating variants cause adrenal tumors and possibly other neoplasms. Objective The objective of this work is to investigate a large cohort spNETs or MEN1 patients for changes in the ARMC5 gene. Patients and Methods A total of 111 patients, 94 with spNET and 17 with MEN1, were screened for ARMC5 germline alterations. Thirty-six tumors (18 spNETs and 18 MEN1 related) were collected from 20 patients. Blood and tumor DNA samples were genotyped using Sanger sequencing and microsatellite markers for chromosomes. ARMC5 and MEN1 expression were assessed by immunohistochemistry. Results In 76 of 111 (68.4%) patients, we identified 16 different ARMC5 germline variants, 2 predicted as damaging. There were no differences in the prevalence of ARMC5 variants depending on the presence of MEN1-related adrenal lesions. Loss of heterozygosity (LOH) at chromosome 16p and ARMC5 germline variants were present together in 23 or 34 (67.6%) tumors; in 7 of 23 (30.4%) their presence led to biallelic inactivation of the ARMC5 gene. The latter was more prevalent in MEN1-related tumors than in spNETs (88.9% vs 38.9%; P = .005). LOH at the chromosome 16p (ARMC5) and 11q (MEN1) loci coexisted in 16/18 MEN1-related tumors, which also expressed lower ARMC5 (P = .02) and MEN1 (P = .01) proteins compared to peritumorous tissues. Conclusion Germline ARMC5 variants are common among spNET and MEN1 patients. ARMC5 haploinsufficiency or biallelic inactivation in spNETs and MEN1-related tumors suggests that ARMC5 may have a role in modifying the phenotype of patients with spNETs and/or MEN1 beyond its known role in macronodular adrenocortical hyperplasia.