Published in

American Association for Cancer Research, Cancer Research, 16_Supplement(80), p. 5056-5056, 2020

DOI: 10.1158/1538-7445.am2020-5056

Links

Tools

Export citation

Search in Google Scholar

Abstract 5056: Quality control efforts in a large-scale, preclinical trial of rare cancer PDXs by the National Cancer Institute's patient-derived models repository (NCI PDMR)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The National Cancer Institute's Patient-Derived Models Repository (NCI PDMR; https://pdmr.cancer.gov) is performing a large-scale multi-year preclinical study with 39 PDX models of rare cancers (mesothelioma, MPNST, osteosarcoma, Merkel cell carcinoma, etc) treated with 56 novel therapeutic combinations in an exploratory, n-of-4 arm, study design. Combinations that show promising responses (e.g., regression or durable inhibition of tumor growth) will be repeated along with the single agent arms to determine if the response is driven by the combination or only one of the agents. In order to do this in a timely fashion, relatively speaking, the PDX tumors are serially passaged and each passage is treated with a set of 8 combinations plus relevant vehicle control(s) while in parallel enough PDXs are retained to be expanded for the next passage and drug set. Every serial passage undergoes several quality control assessments that serve as go/no-go criteria including pathology assessment, human:mouse DNA content assessment, and low pass whole genome sequencing to determine the average fraction of genome changed compared to the original donor material. If there is a QC failure, the PDX model is restarted from early passage cryo-material (passage 1-2). An additional quality control effort is to bookend the combination studies with the first set of agents to see if tumor response is similar across passages. To date, most of the models have demonstrated a high degree of stability, though a couple of models have moved toward murine content and have been restarted from early passage material so all drug combinations can be tested. DNA and RNA are retained from all passages so a full NGS evaluation can be performed at a later date. This effort has been ongoing for over a year and the first bookend studies are beginning to be tested to determine if response at first and last passage of the study are consistent with each other, given the constraints of the inherent heterogeneity of the models themselves. Single agent studies of drug combinations that demonstrated a response in 30%-50% of the models tested are also underway to determine which combinations have a more than additive effect compared to the single agents. Promising combinations will be moved forward to early phase clinical trials for these rare cancers. Funded by NCI Contract No. HHSN261200800001E Citation Format: Yvonne A. Evrard, Biswajit Das, Sergio Y. Alcoser, Suzanne Borgel, Devynn Breen, John Carter, Tiffanie Chase, Alice Chen, Lily Chen, Kristen Cooley, Emily Delaney, Raymond Divelbiss, Lyndsay Dutko, Thomas Forbes, Kyle Georgius, Michelle Gottholm-Ahalt, Tara Grinnage-Pulley, Sierra Hoffman, Chris Karlovich, Shahanawaz Jiwani, Justine Mills, Malorie Morris, Michael Mullendore, Dianne Newton, Rajesh Patidar, Gloryvee Rivera, Howard Stotler, Jesse Stottlemyer, Savanna Styers, Debbie Trail, Shannon Uzelac, Thomas Vilimas, Abigail Walke, Thomas Walsh, Nicole Walters, Peng Wang, P. Mickey Williams, Melinda Hollingshead, James H. Doroshow. Quality control efforts in a large-scale, preclinical trial of rare cancer PDXs by the National Cancer Institute's patient-derived models repository (NCI PDMR) [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5056.