Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Agronomy, 9(10), p. 1311, 2020

DOI: 10.3390/agronomy10091311

Links

Tools

Export citation

Search in Google Scholar

Defining Optimal Strength of the Nutrient Solution for Soilless Cultivation of Saffron in the Mediterranean

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Saffron is traditionally cultivated in soil as a semi-perennial crop, although the feasibility of crop production is today constrained in Europe due to both agronomic and socioeconomic factors. Accordingly, interest has been increasing concerning its possible cultivation within protected environments through adoption of soilless cultivation technologies. The aim of the present study was to optimize nutrient solution features in the soilless cultivation of saffron corms. The trial was conducted in a greenhouse at Almeria University. Saffron was grown in 15-L pots filled with perlite. Three fertigation treatments were used, obtained by a linear increase of all nutrients of one standard in order to reach an electrical conductivity (EC) of 2.0 (control, EC2.0), 2.5 (EC2.5) and 3.0 (EC3.0) dS·m−1. Measurements included determinations of shoot length, corm yield, as well as nutrient uptake from the nutrient solution and concentrations within plant tissues. The nutrient solution with the highest EC (EC3.0) allowed obtaining three to five times more corms above 25-mm diameter. The increasing EC had a significant effect on the increase of macronutrient uptake, except for NO3− and NH4+ and resulted in a general increase of nutrient concentrations in tissues, such as corms and roots. Both macronutrient uptake and accumulation in plant tissues were highest under EC3.0. Nutrient uptake was significantly correlated with production of larger corms due to higher horizontal diameter.