Nature Research, Scientific Reports, 1(10), 2020
DOI: 10.1038/s41598-020-71374-3
Full text: Download
AbstractThe advent of domestication is a major step that transformed the subsistence strategies of past human societies. In Africa, domestic caprines (sheep and goat) were introduced in the north-eastern part of the continent from the Near East more than 9000 years ago. However, their diffusion southwards was slow. They are thought to have made their first appearance in the southern part of the continent ca. 2000 years ago, at a few Later Stone Age sites, including Leopard Cave (Erongo region, Namibia), which provided the oldest directly dated remains assigned to sheep or goat on the basis of morphology of bones and teeth. However, similarities in morphology, not only between these two domesticated caprine species, but also between them and the small wild antelopes, raised questions about the morphological species attribution of these remains. Additionally, the high fragmentation of the site’s osteological remains makes it difficult to achieve species-level taxonomic identification by comparative anatomy. In this paper, we report molecular species identification of the Leopard Cave remains using palaeoproteomics, a method that uses protein markers in bone and tooth collagen to achieve taxonomic identification of archaeological remains. We also report new direct radiocarbon dates. Wild antelope remains from museum collections were used to enrich the available protein record and propose de novo type I collagen sequences. Our results demonstrate that the remains morphologically described as domesticates actually belong to a wild antelope species and that domestic caprines first appeared at Leopard Cave 1500 years later than previously thought. This study illustrates that the use of palaeoproteomics coupled with direct radiocarbon dates is particularly suited to complement classic zooarchaeological studies, in this case concerning the arrival of the first herding practices in arid environments.