Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 17(13), p. 4508, 2020

DOI: 10.3390/en13174508

Links

Tools

Export citation

Search in Google Scholar

Data-Intensive Task Scheduling for Heterogeneous Big Data Analytics in IoT System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Efficient big data analysis is critical to support applications or services in Internet of Things (IoT) system, especially for the time-intensive services. Hence, the data center may host heterogeneous big data analysis tasks for multiple IoT systems. It is a challenging problem since the data centers usually need to schedule a large number of periodic or online tasks in a short time. In this paper, we investigate the heterogeneous task scheduling problem to reduce the global task execution time, which is also an efficient method to reduce energy consumption for data centers. We establish the task execution for heterogeneous tasks respectively based on the data locality feature, which also indicate the relationship among the tasks, data blocks and servers. We propose a heterogeneous task scheduling algorithm with data migration. The core idea of the algorithm is to maximize the efficiency by comparing the cost between remote task execution and data migration, which could improve the data locality and reduce task execution time. We conduct extensive simulations and the experimental results show that our algorithm has better performance than the traditional methods, and data migration actually works to reduce th overall task execution time. The algorithm also shows acceptable fairness for the heterogeneous tasks.