MDPI, Journal of Personalized Medicine, 3(10), p. 109, 2020
DOI: 10.3390/jpm10030109
Full text: Download
Lung cancer remains the most dangerous type of cancer despite recent progress in therapeutic modalities. Development of prognostic markers and therapeutic targets is necessary to enhance lung cancer patient survival. Sestrin family genes (Sestrin1, Sestrin2, and Sestrin3) are involved in protecting cells from stress. In particular, Sestrin2, which mainly protects cells from oxidative stress and acts as a leucine sensor protein in mammalian target of rapamycin (mTOR) signaling, is thought to affect various cancers in different ways. To investigate the role of Sestrin2 expression in lung cancer cells, we knocked down Sestrin2 in A549, a non-small cell lung cancer cell line; this resulted in reduced cell proliferation, migration, sphere formation, and drug resistance, suggesting that Sestrin2 is closely related to lung cancer progression. We analyzed Sestrin2 expression in human tissue using various bioinformatic databases and confirmed higher expression of Sestrin2 in lung cancer cells than in normal lung cells using Oncomine and the Human Protein Atlas. Moreover, analyses using Prognoscan and KMplotter showed that Sestrin2 expression is negatively correlated with the survival of lung cancer patients in multiple datasets. Co-expressed gene analysis revealed Sestrin2-regulated genes and possible associated pathways. Overall, these data suggest that Sestrin2 expression has prognostic value and that it is a possible therapeutic target in lung cancer.